3.1.50 \(\int \csc ^3(c+d x) (a+a \sin (c+d x))^{3/2} \, dx\) [50]

Optimal. Leaf size=106 \[ -\frac {7 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{4 d}-\frac {7 a^2 \cot (c+d x)}{4 d \sqrt {a+a \sin (c+d x)}}-\frac {a^2 \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a+a \sin (c+d x)}} \]

[Out]

-7/4*a^(3/2)*arctanh(cos(d*x+c)*a^(1/2)/(a+a*sin(d*x+c))^(1/2))/d-7/4*a^2*cot(d*x+c)/d/(a+a*sin(d*x+c))^(1/2)-
1/2*a^2*cot(d*x+c)*csc(d*x+c)/d/(a+a*sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 106, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2841, 21, 2851, 2852, 212} \begin {gather*} -\frac {7 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{4 d}-\frac {7 a^2 \cot (c+d x)}{4 d \sqrt {a \sin (c+d x)+a}}-\frac {a^2 \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csc[c + d*x]^3*(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(-7*a^(3/2)*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/(4*d) - (7*a^2*Cot[c + d*x])/(4*d*Sqrt[a
 + a*Sin[c + d*x]]) - (a^2*Cot[c + d*x]*Csc[c + d*x])/(2*d*Sqrt[a + a*Sin[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2841

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-b^2)*(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c
 + a*d))), x] + Dist[b^2/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1
)*Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b*c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{
a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1
] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2851

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x]
+ Dist[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \csc ^3(c+d x) (a+a \sin (c+d x))^{3/2} \, dx &=-\frac {a^2 \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a+a \sin (c+d x)}}-\frac {1}{2} a \int \frac {\csc ^2(c+d x) \left (-\frac {7 a}{2}-\frac {7}{2} a \sin (c+d x)\right )}{\sqrt {a+a \sin (c+d x)}} \, dx\\ &=-\frac {a^2 \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a+a \sin (c+d x)}}+\frac {1}{4} (7 a) \int \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx\\ &=-\frac {7 a^2 \cot (c+d x)}{4 d \sqrt {a+a \sin (c+d x)}}-\frac {a^2 \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a+a \sin (c+d x)}}+\frac {1}{8} (7 a) \int \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx\\ &=-\frac {7 a^2 \cot (c+d x)}{4 d \sqrt {a+a \sin (c+d x)}}-\frac {a^2 \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a+a \sin (c+d x)}}-\frac {\left (7 a^2\right ) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{4 d}\\ &=-\frac {7 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{4 d}-\frac {7 a^2 \cot (c+d x)}{4 d \sqrt {a+a \sin (c+d x)}}-\frac {a^2 \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a+a \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(250\) vs. \(2(106)=212\).
time = 0.42, size = 250, normalized size = 2.36 \begin {gather*} \frac {a \csc ^7\left (\frac {1}{2} (c+d x)\right ) \sqrt {a (1+\sin (c+d x))} \left (6 \cos \left (\frac {1}{2} (c+d x)\right )-14 \cos \left (\frac {3}{2} (c+d x)\right )-7 \log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+7 \cos (2 (c+d x)) \log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+7 \log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )-7 \cos (2 (c+d x)) \log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )-6 \sin \left (\frac {1}{2} (c+d x)\right )-14 \sin \left (\frac {3}{2} (c+d x)\right )\right )}{4 d \left (1+\cot \left (\frac {1}{2} (c+d x)\right )\right ) \left (\csc ^2\left (\frac {1}{4} (c+d x)\right )-\sec ^2\left (\frac {1}{4} (c+d x)\right )\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Csc[c + d*x]^3*(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(a*Csc[(c + d*x)/2]^7*Sqrt[a*(1 + Sin[c + d*x])]*(6*Cos[(c + d*x)/2] - 14*Cos[(3*(c + d*x))/2] - 7*Log[1 + Cos
[(c + d*x)/2] - Sin[(c + d*x)/2]] + 7*Cos[2*(c + d*x)]*Log[1 + Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 7*Log[1
- Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] - 7*Cos[2*(c + d*x)]*Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] - 6*S
in[(c + d*x)/2] - 14*Sin[(3*(c + d*x))/2]))/(4*d*(1 + Cot[(c + d*x)/2])*(Csc[(c + d*x)/4]^2 - Sec[(c + d*x)/4]
^2)^2)

________________________________________________________________________________________

Maple [A]
time = 2.25, size = 126, normalized size = 1.19

method result size
default \(-\frac {\left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (9 \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, a^{\frac {5}{2}}-7 \left (-a \left (\sin \left (d x +c \right )-1\right )\right )^{\frac {3}{2}} a^{\frac {3}{2}}+7 \arctanh \left (\frac {\sqrt {-a \left (\sin \left (d x +c \right )-1\right )}}{\sqrt {a}}\right ) a^{3} \left (\sin ^{2}\left (d x +c \right )\right )\right )}{4 \sin \left (d x +c \right )^{2} a^{\frac {3}{2}} \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(126\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(d*x+c)^3*(a+a*sin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/4*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(9*(-a*(sin(d*x+c)-1))^(1/2)*a^(5/2)-7*(-a*(sin(d*x+c)-1))^(3/2)
*a^(3/2)+7*arctanh((-a*(sin(d*x+c)-1))^(1/2)/a^(1/2))*a^3*sin(d*x+c)^2)/sin(d*x+c)^2/a^(3/2)/cos(d*x+c)/(a+a*s
in(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^3*(a+a*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((a*sin(d*x + c) + a)^(3/2)*csc(d*x + c)^3, x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 337 vs. \(2 (90) = 180\).
time = 0.44, size = 337, normalized size = 3.18 \begin {gather*} \frac {7 \, {\left (a \cos \left (d x + c\right )^{3} + a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} - a\right )} \sin \left (d x + c\right ) - a\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} - 9 \, a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) + 4 \, {\left (7 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) + {\left (7 \, a \cos \left (d x + c\right ) + 5 \, a\right )} \sin \left (d x + c\right ) - 5 \, a\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{16 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2} - d \cos \left (d x + c\right ) + {\left (d \cos \left (d x + c\right )^{2} - d\right )} \sin \left (d x + c\right ) - d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^3*(a+a*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/16*(7*(a*cos(d*x + c)^3 + a*cos(d*x + c)^2 - a*cos(d*x + c) + (a*cos(d*x + c)^2 - a)*sin(d*x + c) - a)*sqrt(
a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 + (cos(d*x + c) + 3)*sin(d*x + c) - 2*cos(d*
x + c) - 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a) - 9*a*cos(d*x + c) + (a*cos(d*x + c)^2 + 8*a*cos(d*x + c) - a)*si
n(d*x + c) - a)/(cos(d*x + c)^3 + cos(d*x + c)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c) - 1)) + 4*
(7*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) + (7*a*cos(d*x + c) + 5*a)*sin(d*x + c) - 5*a)*sqrt(a*sin(d*x + c) + a)
)/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2 - d*cos(d*x + c) + (d*cos(d*x + c)^2 - d)*sin(d*x + c) - d)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)**3*(a+a*sin(d*x+c))**(3/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 5005 deep

________________________________________________________________________________________

Giac [A]
time = 0.52, size = 158, normalized size = 1.49 \begin {gather*} -\frac {\sqrt {2} {\left (7 \, \sqrt {2} a \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + \frac {4 \, {\left (14 \, a \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 9 \, a \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}\right )} \sqrt {a}}{16 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^3*(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

-1/16*sqrt(2)*(7*sqrt(2)*a*log(abs(-2*sqrt(2) + 4*sin(-1/4*pi + 1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(-1/4*p
i + 1/2*d*x + 1/2*c)))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c)) + 4*(14*a*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-
1/4*pi + 1/2*d*x + 1/2*c)^3 - 9*a*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-1/4*pi + 1/2*d*x + 1/2*c))/(2*sin(-
1/4*pi + 1/2*d*x + 1/2*c)^2 - 1)^2)*sqrt(a)/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{3/2}}{{\sin \left (c+d\,x\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(c + d*x))^(3/2)/sin(c + d*x)^3,x)

[Out]

int((a + a*sin(c + d*x))^(3/2)/sin(c + d*x)^3, x)

________________________________________________________________________________________